Exercise 2

Convert each of the following BVPs in 1-8 to an equivalent Fredholm integral equation:

$$
y^{\prime \prime}+x y=0, y(0)=y(1)=0
$$

Solution

Let

$$
\begin{equation*}
y^{\prime \prime}(x)=u(x) . \tag{1}
\end{equation*}
$$

Integrate both sides from 0 to x.

$$
\begin{aligned}
\int_{0}^{x} y^{\prime \prime}(t) d t & =\int_{0}^{x} u(t) d t \\
y^{\prime}(x)-y^{\prime}(0) & =\int_{0}^{x} u(t) d t
\end{aligned}
$$

Bring $y^{\prime}(0)$ to the right side.

$$
y^{\prime}(x)=y^{\prime}(0)+\int_{0}^{x} u(t) d t
$$

Integrate both sides from 0 to x again.

$$
\begin{aligned}
& \int_{0}^{x} y^{\prime}(r) d r=\int_{0}^{x}\left[y^{\prime}(0)+\int_{0}^{r} u(t) d t\right] d r \\
& y(x)-y(0)=y^{\prime}(0) x+\int_{0}^{x} \int_{0}^{r} u(t) d t d r
\end{aligned}
$$

Substitute $y(0)=0$.

$$
y(x)=y^{\prime}(0) x+\int_{0}^{x} \int_{0}^{r} u(t) d t d r
$$

Use integration by parts to write the double integral as a single integral. Let

$$
\begin{array}{rr}
v=\int_{0}^{r} u(t) d t & d w=d r \\
d v=u(r) d r & w=r
\end{array}
$$

and use the formula $\int v d w=v w-\int w d v$.

$$
\begin{aligned}
y(x) & =y^{\prime}(0) x+\left.r \int_{0}^{r} u(t) d t\right|_{0} ^{x}-\int_{0}^{x} r u(r) d r \\
& =y^{\prime}(0) x+x \int_{0}^{x} u(t) d t-\int_{0}^{x} r u(r) d r \\
& =y^{\prime}(0) x+x \int_{0}^{x} u(t) d t-\int_{0}^{x} t u(t) d t \\
& =y^{\prime}(0) x+\int_{0}^{x}(x-t) u(t) d t
\end{aligned}
$$

In order to determine $y^{\prime}(0)$, set $x=1$ in this equation for $y(x)$.

$$
y(1)=y^{\prime}(0)+\int_{0}^{1}(1-t) u(t) d t
$$

Substitute $y(1)=0$ and solve for $y^{\prime}(0)$.

$$
0=y^{\prime}(0)+\int_{0}^{1}(1-t) u(t) d t \quad \rightarrow \quad y^{\prime}(0)=-\int_{0}^{1}(1-t) u(t) d t
$$

Plug this result for $y^{\prime}(0)$ back into the formula for $y(x)$.

$$
\begin{equation*}
y(x)=-x \int_{0}^{1}(1-t) u(t) d t+\int_{0}^{x}(x-t) u(t) d t \tag{2}
\end{equation*}
$$

Now plug equations (1) and (2) into the original ODE.

$$
y^{\prime \prime}+x y=0 \quad \rightarrow \quad u(x)+x\left[-x \int_{0}^{1}(1-t) u(t) d t+\int_{0}^{x}(x-t) u(t) d t\right]=0
$$

Expand the left side.

$$
u(x)-x^{2} \int_{0}^{1}(1-t) u(t) d t+x \int_{0}^{x}(x-t) u(t) d t=0
$$

Solve for $u(x)$.

$$
\begin{aligned}
u(x) & =x^{2} \int_{0}^{1}(1-t) u(t) d t-x \int_{0}^{x}(x-t) u(t) d t \\
& =\int_{0}^{1} x^{2}(1-t) u(t) d t-\int_{0}^{x} x(x-t) u(t) d t \\
& =\int_{0}^{x} x^{2}(1-t) u(t) d t+\int_{x}^{1} x^{2}(1-t) u(t) d t-\int_{0}^{x} x(x-t) u(t) d t \\
& =\int_{0}^{x}\left[x^{2}(1-t)-x(x-t)\right] u(t) d t+\int_{x}^{1} x^{2}(1-t) u(t) d t \\
& =\int_{0}^{x}\left(-x^{2} t+x t\right) u(t) d t+\int_{x}^{1} x^{2}(1-t) u(t) d t \\
& =\int_{0}^{x} x t(1-x) u(t) d t+\int_{x}^{1} x^{2}(1-t) u(t) d t
\end{aligned}
$$

Therefore, the equivalent Fredholm integral equation is

$$
u(x)=\int_{0}^{1} K(x, t) u(t) d t
$$

where

$$
K(x, t)=\left\{\begin{array}{ll}
x t(1-x) & 0 \leq t \leq x \\
x^{2}(1-t) & x \leq t \leq 1
\end{array} .\right.
$$

